Differential expression of dystrophin isoforms in strains of mdx mice with different mutations.
نویسندگان
چکیده
Mutations in the dystrophin gene are responsible for Duchenne and Becker muscular dystrophy (DMD/BMD). Studies of dystrophin expression and function have benefited from use of the mdx mouse, an animal model for DMD/BMD. Here we characterized mutations in three additional strains of mdx mice, the mdx2cv, mdx4cv and mdx5cv alleles. The mutation in the mdx2cv mouse was found to be a single base change in the splice acceptor sequence of dystrophin intron 42. This mutation leads to a complex pattern of aberrant splicing that generates multiple transcripts, none of which preserve the normal open reading frame. In the mdx5cv allele, the dystrophin mRNA contains a 53 bp deletion of sequences from exon 10. Analysis of the genomic DNA uncovered a single A to T transversion in exon 10. Although this base change does not alter the encoded amino acid, a new splice donor was created (GTGAG) that generates a frameshifting deletion in the processed mRNA. In the mdx4cv allele, direct sequencing revealed a C to T transition in exon 53, creating an ochre codon (CAA to TAA). The differential location of these mutations relative to the seven known dystrophin promoters results in a series of mdx mouse mutants that differ in their repertoire of isoform expression, such that these mice should be useful for studies of dystrophin expression and function. The mdx4cv and mdx5cv strains may be of additional use in gene transfer studies due to their low frequency of mutation reversion.
منابع مشابه
Localization of dystrophin isoform Dp71 to the inner limiting membrane of the retina suggests a unique functional contribution of Dp71 in the retina.
The electroretinograms (ERGs) of patients with Duchenne muscular dystrophy and an allelic variant of the mdx mouse (mdxCv3) have been shown to be abnormal. Analysis of five allelic variants of the mdx mouse with mutations in the dystrophin gene has shown that there is a correlation between the position of the mutation and the severity of the ERG abnormality. Three isoforms are expressed in the ...
متن کاملMarginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice
Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that...
متن کاملDifferential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice.
The dystrophin-deficient mouse (mdx) is a homologue animal model of Duchenne muscular dystrophy (DMD) and is characterized by slowly progressive muscle weakness accompanied by changes in myosin heavy chain (MyHC) composition. It is likely that the masticatory muscles undergo similar changes. The aim of this study was to examine the masticatory muscles (masseter, temporal, tongue, and soleus) of...
متن کاملSubcellular Localization of Dystrophin Isoforms in Cardiomyocytes and Phenotypic Analysis of Dystrophin-deficient Mice Reveal Cardiac Myopathy is Predominantly Caused by a Deficiency in Full-length Dystrophin
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive muscle degenerative disorder that causes dilated cardiomyopathy in the second decade of life in affected males. Dystrophin, the gene responsible for DMD, encodes full-length dystrophin and various short dystrophin isoforms. In the mouse heart, full-length dystrophin Dp427 and a short dystrophin isoform, Dp71, are expressed. ...
متن کاملPrevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform.
The C-terminal domain of dystrophin is alternatively spliced to produce a variety of tissue and developmental stage-specific isoforms. Recent studies suggest that the C-terminal domain binds to the dystrophin-associated glycoprotein complex (DGC) in muscle, but little is known about the functional significance of the alternative splicing or what role individual isoforms may play in specific tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 5 8 شماره
صفحات -
تاریخ انتشار 1996